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Bounded Simplex-Structured Matrix Factorization:
Algorithms, Identifiability and Applications

Olivier Vu Thanh, Nicolas Gillis, Fabian Lecron

Abstract—In this paper, we propose a new low-rank matrix
factorization model dubbed bounded simplex-structured matrix
factorization (BSSMF). Given an input matrix X and a factor-
ization rank r, BSSMF looks for a matrix W with r columns
and a matrix H with r rows such that X ≈ WH where the
entries in each column of W are bounded, that is, they belong to
given intervals, and the columns of H belong to the probability
simplex, that is, H is column stochastic. BSSMF generalizes
nonnegative matrix factorization (NMF), and simplex-structured
matrix factorization (SSMF). BSSMF is particularly well suited
when the entries of the input matrix X belong to a given
interval; for example when the rows of X represent images,
or X is a rating matrix such as in the Netflix and MovieLens
datasets where the entries of X belong to the interval [1, 5].
The simplex-structured matrix H not only leads to an easily
understandable decomposition providing a soft clustering of the
columns of X , but implies that the entries of each column of
WH belong to the same intervals as the columns of W . In this
paper, we first propose a fast algorithm for BSSMF, even in the
presence of missing data in X . Then we provide identifiability
conditions for BSSMF, that is, we provide conditions under
which BSSMF admits a unique decomposition, up to trivial
ambiguities. Finally, we illustrate the effectiveness of BSSMF on
two applications: extraction of features in a set of images, and
the matrix completion problem for recommender systems.

Index Terms—simplex-structured matrix factorization, non-
negative matrix factorization, identifiability, algorithms.

I. INTRODUCTION

LOW-RANK matrix factorizations have recently emerged
as very efficient models for unsupervised learning; see,

e.g., [45], [44] and the references therein. The most notable
example is principal component analysis (PCA), which can be
solved efficiently via the singular value decomposition. In the
last 20 years, many new more sophisticated models have been
proposed, such as sparse PCA that requires one of the factors
to be sparse to improve interpretability [11], robust PCA to
handle gross corruption and outliers [7], [6], and low-rank
matrix completion, also known as PCA with missing data, to
handle missing entries in the input matrix [28].

Among such methods, nonnegative matrix factorization
(NMF), popularized by Lee and Seung in 1999 [32], required
the factors of the decomposition to be component-wise non-
negative. More precisely, given an input matrix X ∈ Rm×n

and a factorization rank r, NMF looks for a nonnegative matrix

University of Mons, Rue de Houdain 9, 7000 Mons, Belgium. Emails:
{olivier.vuthanh, nicolas.gillis, fabian.lecron}@umons.ac.be. The authors ac-
knowledge the support by the Fonds de la Recherche Scientifique - FNRS
(F.R.S.-FNRS) under the Research Project T.0097.22, by the F.R.S.-FNRS
and the Fonds Wetenschappelijk Onderzoek - Vlanderen (FWO) under EOS
Project no O005318F-RG47, and by the Francqui Foundation.

W with r columns and a nonnegative matrix H with r rows
such that X ≈ WH . NMF has been shown to be useful in
many applications, including topic modeling, image analysis,
hyperspectral unmixing, and audio source separation; see [9],
[16], [20] for more examples. The main advantage of NMF
compared to previously introduced low-rank models is that the
nonnegativity constraints on the factors W and H lead to an
easily interpretable part-based decomposition.

More recently, simplex-structured matrix factorization
(SSMF) was introduced as a generalization of NMF [48];
see also [1] and the references therein. SSMF does not
impose any constraint on W , while it requires H to be
column stochastic, that is, H(:, j) ∈ ∆r for all j, where
∆r = {x∈ Rr | x ≥ 0, e>x = 1} is the probability simplex
and e is the vector of all ones of appropriate dimension.
SSMF is closely related to various machine learning problems,
such as latent Dirichlet allocation, clustering, and the mixed
membership stochastic block model; see [3] and the references
therein. Let us recall why SSMF is a generalizarion of NMF
by considering the exact NMF model, X = WH . Let us
normalize the input matrix such that the entries in each column
sum to one (w.l.o.g. we assume X , and W , do not have a zero
column), that is, such that X>e = e, and let us impose w.l.o.g.
that the entries in each column of W also sum to one (by the
scaling degree of freedom in the factorization WH), that is,
W>e = e. Then, we have

X>e = e = (WH)>e = H>W>e = H>e, (1)

so that H has to be column stochastic, since H ≥ 0 and
H>e = e is equivalent to H(:, j) ∈ ∆r for all j.

In this paper, we introduce bounded simplex-structured
matrix factorization (BSSMF). BSSMF imposes the columns
of W to belong to a hyperrectangle, namely W (i, j) ∈ [ai, bi]
for all i, j for some parameters ai ≤ bi for all i. For simplicity,
given a ≤ b ∈ Rm, we denote the hyperrectangle

[a, b] = {y ∈ Rm | ai ≤ yi ≤ bi for all i},

and refer to it as an interval. The hyperrectangle constraint on
W is denoted as W (:, j) ∈ [a, b] for all j. Let us formally
define BSSMF.

Definition 1 (BSSMF). Let X ∈ Rm×n, let r ≤ min(m,n) be
an integer, and let a, b ∈ Rm with a ≤ b. The pair (W,H) ∈
Rm×r×Rr×n is a BSSMF of X of size r for the interval [a, b]
if

W (:, k) ∈ [a, b] for all k, H ≥ 0, and H>e = e.
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Since the columns of H define convex combinations, the
convex hull of the columns of X = WH is contained in the
convex hull of the columns of W , which is itself contained in
the hyperrectangle [a, b]. This implies that the hyperrectangle
[a, b] must contain the columns of the data matrix, X = WH .

BSSMF reduces to SSMF when ai = −∞ and bi = +∞
for all i. When X ≥ 0, BSSMF reduces to NMF when ai = 0
and bi = +∞ for all i, after a proper normalization of X; see
the discussion around Equation (1).

a) Outline and contribution of the paper: The paper is
organized as follows. In Section II, we explain the motivation
of introducting BSSMF. In Section III, we propose an efficient
algorithm for BSSMF. In Section IV, we provide an identifia-
bility result for BSSMF, which follows from an identifiability
results for NMF. In Section V, we illustrate the effectiveness
of BSSMF on two applications:
• Image feature extraction: the entries of X are pixel

intensities. For example, for a gray level image, the
entries of X belong to the interval [0, 255].

• Recommender systems: the entries of X are ratings of
users for some items (e.g., movies). These ratings belong
to an interval, e.g., [1,5] for the Netflix and MovieLens
datasets.

Remark 1 (Extended conference paper). This paper is an
extended version of our conference paper [47]. It provides
significant new material:
• A more thorough discussion on the background and the

motivations to introduce BSSMF; see Section II.
• A new algorithm handling missing data and accelerated

via data centering; see Section III.
• Illustrations, examples, and proof for the identifiability of

BSSMF; see Section IV-C.
• New numerical experiments on synthetic, and the MNIST

and MovieLens datasets; see Sections III-C and V.

II. MOTIVATION OF BSSMF

The motivation to introduce BSSMF is mostly fourfold; this
is described in the next four paragraphs.

a) Bounded low-rank approximation: When the data
naturally belong to intervals, imposing the approximation to
belong to the same interval allows to provide better approxi-
mations, taking into account this prior information. Imposing
that the entries in W belong to some interval and that H is
column stochastic resolves this issue. BSSMF implies that the
columns of the approximation WH belong to the same interval
as the columns of W . In fact, for all j,

X(:, j) ≈ WH(:, j) ∈ [a, b],

since W (:, k) ∈ [a, b]m for all k, and the entries of H(:, j)
are nonnegative and sum to one.

Another closely related model was proposed in [37] where
the entries of the factors W and H are required to belong
to bounded intervals. The authors showed that their model
is suitable for clustering. Nonetheless, it is not clear how to
choose the lower and upper bounds on the entries of W and H
to obtain tight lower and upper bounds for their product WH .

With BSSMF the choice for the lower and upper bounds is
easier, e.g., choosing ai and bi to be the smallest and largest
entry in X(i, :), respectively, that is, bounding W in the same
way the data matrix is; see Section IV-C for more details.

b) Interpretability: BSSMF allows us to easily interpret
both factors: the columns of W can be interpreted in the same
way as the columns of X (e.g., as movie ratings, or pixel
intensities), while the columns of H provide a soft clustering
of the columns of X as they are column stochastic. BSSMF
can be interpreted geometrically similarly as SSMF and NMF:
the convex hull of the columns of W , conv(W ), must contain
conv(X), since X(:, j) = WH(:, j) for all j where H is
column stochastic, while it is contained in the hyperrectangle
[a, b]:

conv(X) ⊆ conv(W ) ⊆ [a, b].

Imposing bounds on the approximation, via the element-
wise constraints a ≤ WH ≤ b for some a, b ∈ R, was
proposed in [27] and applied successfully to recommender
systems. However, this model does not allow to interpret the
basis factor, W , in the same way as the data. Some elements
in W will probably be out the rating range because W is
not directly constrained. Hence, the basis elements in W can
only be interpreted as “eigen users”, while with BSSMF, the
basis elements can be interpreted as virtual meaningful users.
It is also difficult to interpret the factor H as it could contain
negative contributions. In fact, only imposing a ≤ WH ≤ b
typically leads to dense factors W and H (that is, factors
that do not contain many zeros, as opposed to sparse factors),
while in most applications interpretability usually comes with
a certain sparsity degree in at least one of the factors.

A closely related model that tackles blind source separation
is bounded component analysis (BCA) proposed in [10], [14],
where the sources are assumed to belong to compact sets
(hyperrectangle being a special case), while no constraints is
imposed on the mixing matrix. Again, without any constraints
on the mixing matrix, BCA will generate dense factors with
negative linear combinations which are difficult to interpret.
Let us note that their motivation is different than ours, as their
objective is to extract mixed sources, while ours is to extract
interpretable features and decompose data through them. In
[39], the authors also proposed a blind source separation
algorithm for bounded sources based on geometrical concepts.
The mixtures are assumed to belong to a parallelogram.
The proposed separation technique is relies on mapping this
parallelogram to a rectangle. Again, their objective is to extract
mixed sources. Nonetheless, working with a domain different
than a hyperrectangle could be of interest for future work.

c) Identifiability: Identifiability is key in practice as it
allows to recover the ground truth that generated the data;
see the discussion in [16], [29] and the references therein.
A drawback of SSMF is that it is never identifiable, see
Section IV-A for further details. On the counterpart NMF
can be identifiable, which is discussed in Section IV-B.
Nonetheless, the conditions are not mild. For NMF to be
identifiable, it is necessary that the supports of the columns
of W (that is, the set of non-zero entries) are not contained
in one another (this is called a Sperner family), and similarly
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for the supports of the rows of H; see, e.g., [40], [30]. This
requires the presence of zeros in each column of W and row
of H , which can be a strong condition in some applications.
For example, in hyperspectral unmixing, W is typically not
sparse because it recovers spectral signatures of constitutive
materials which are typically positive. Although the conditions
for NMF (and SSMF) to be identifiable can be weakened using
additional constraints and regularization terms, it then requires
hyperparameter tuning procedures. In [43], they propose a
model where the columns of H belong to a polytope. Using
a maximum volume criterion on the convex hull of H , their
model is identifiable under the condition that the convex hull
of H contains the ellipsoid of maximum volume inscribed in
the constraining polytope. The use of the maximum volume
criterion also requires hyperparameter tuning. In [10], [14],
the sources are identifiable by optimizing some geometric
criterion, respectively minimizing a perimeter, and maximizing
the ratio between the volume of an ellipsoid and the volume
of a hyperrectangle. These identifiability conditions are not
relevant to our model. As we will see in Section IV, BSSMF
is identifiable under relatively mild conditions, while it does
not require parameter tuning, as opposed to most regularized
structured matrix factorization models that are identifiable.
Let us note that it is also possible to formulate identifiable
nonlinear matrix approximation models like the bilinear model
of [12], but this is out of the scope of this paper.

d) Robustness to overfitting: Another drawback of NMF
and SSMF is that they are rather sensitive to the choice of r.
When r is chosen too large, these two models are over-
parameterized and will typically lead to overfitting. This is
a well-known behaviour that can be addressed with additional
regularization terms that need to be fine tuned [41]. As we
will see experimentally in Section V-C for matrix completion,
without any parameter tuning, BSSMF is much more robust to
overfitting than NMF and unconstrained matrix factorization.
The reason is that the additional bound constraints on W and
sum-to-one constraint on H prevents columns of W and of
WH from going outside the feasible range, [a, b]. In turn,
BSSMF will be less sensitive to noise and an overestimation
of r. For example, an outlier that falls outside the feasible
set [a, b] will not pose problems to BSSMF, while it may
significantly impact the NMF and SSMF solutions.

III. INERTIAL BLOCK-COORDINATE DESCENT ALGORITHM
FOR BSSMF

In this paper, we consider the following BSSMF problem

min
W,H

g(W,H) :=
1

2
‖X −WH‖2F

such that W (:, k) ∈ [a, b] for all k,

H ≥ 0, and H>e = e,

(2)

that uses the squared Frobenius norm to measure the error of
the approximation.

A. Proposed algorithm

Most NMF algorithms rely on block coordinate descent
methods, that is, they update a subset of the variables at

a time, such as the popular multiplicative updates of Lee
and Seung [33], the hierarchical alternating least squares
algorithm [8], [19], and a fast gradient based algorithm [23];
see, e.g., [20, Chapter 8] and the references therein for more
detail. More recently, an inerTial block majorIzation minimiza-
tion framework for non-smooth non-convex opTimizAtioN
(TITAN) was introduced in [25] and has been shown to be
particularly powerful to solve matrix and tensor factorization
problems [24], [38], [46].

To solve (2), we therefore apply TITAN which updates one
block W or H at a time while fixing the value of the other
block. In order to update W (resp. H), TITAN chooses a block
surrogate function for W (resp. H), embeds an inertial term to
this surrogate function and then minimizes the obtained inertial
surrogate function. We have ∇W g(W,H) = −(X−WH)H>

which is Lipschitz continuous in W with the Lipschitz con-
stant ‖HH>‖. Similarly, ∇Hg(W,H) = −W>(X −WH)
is Lipschitz continuous in H with constant ‖W>W‖. Hence,
we choose the Lipschitz gradient surrogate for both W and H
and choose the Nesterov-type acceleration as analysed in [25,
Section 4.2.1] and [25, Remark 4.1], see also [25, Section 6.1]
and [46] for similar applications.

In the case of missing entries in X , let us consider the more
general model

min
W,H

g(W,H) :=
1

2
‖M ◦ (X −WH)‖2F

such that W (:, k) ∈ [a, b] for all k,

H ≥ 0, and H>e = e,

(3)

where ◦ corresponds to the Hadamard product, and M is
a weight matrix which can model missing entries using
M(i, j) = 0 when X(i, j) is missing, and M(i, j) = 1
otherwise. It can also be used in other contexts; see, e.g., [18],
[42], [21]. TITAN can also be used to solve (3), where the gra-
dients are equal to ∇W g(W,H) = −(M ◦ (X −WH))H>

and ∇Hg(W,H) = −W>(M ◦ (X −WH)). We acknowl-
edge that the identifiability result that will be presented in
Section IV does not hold for the case where some data are
missing, this is an interesting direction of future research.
Alg. 1 describes TITAN for solving the general problem (3),
where [.]ab is the column-wise projection on [a, b] and [.]∆r

is the column wise projection on the simplex ∆r. When
some data are missing, the Lipschitz constant of the gradients
relatively to W and H could be smaller than ‖HH>‖ and
‖W>W‖, respectively. Relatively to H for instance, a smaller
Lipschitz constant would be maxi ‖W>(M(:, i)e>)◦W‖. We
arbitrarily choose to keep ‖HH>‖ and ‖W>W‖ even when
some data are missing since those values are faster to compute.
Due to our derived algorithm being a particular instance of
TITAN with Lipschitz gradient surrogates [25, Section 4.2],
Alg. 1 guarantees a subsequential convergence, that is, every
limit point of the generated sequence is a stationary point of
Problem (2). The Julia code for Alg. 1 is available on gitlab1

(a MATLAB code is also available on gitlab2 but it does not

1https://gitlab.com/vuthanho/bssmf.jl
2https://gitlab.com/vuthanho/bounded-simplex-structured-matrix-

factorization

https://gitlab.com/vuthanho/bssmf.jl
https://gitlab.com/vuthanho/bounded-simplex-structured-matrix-factorization
https://gitlab.com/vuthanho/bounded-simplex-structured-matrix-factorization
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handle missing data for now). We omit the implementation
details here, but let us mention that when data are missing, our
Julia implementation does not compute the Hadamard product
with M explicitly but rather takes advantage of the sparsity of
the data by using multithreading to improve the computational
time. The projections [.]ab and [.]∆r are also computed using
multithreading.

Algorithm 1: BSSMF
input : Input data matrix X ∈ Rm×n, bounds

a ≤ b ∈ Rm, initial factors W ∈ Rm×r s.t.
W (:, k) ∈ [a, b] for all k and simplex
structured H ∈ Rr×n

+ , weights M ∈ [0, 1]m×n

output: W and H
1 α1 = 1, α2 = 1, Wold = W,Hold = H ,

Lprev
W = LW = ‖HH>‖2, Lprev

H = LH = ‖W>W‖2
2 repeat
3 while stopping criteria not satisfied do
4 α0 = α1, α1 = (1 +

√
1 + 4α2

0)/2
5 βW =

min
[

(α0 − 1)/α1, 0.9999
√
Lprev
W /LW

]
6 W ←W + βW (W −Wold)
7 Wold ←W

8 W ←
[
W + (M◦(X−WH))H>

LW

]b
a

9 Lprev
W = LW

10 LH ← ‖W>W‖2
11 while stopping criteria not satisfied do
12 α0 = α2, α2 = (1 +

√
1 + 4α2

0)/2
13 βH =

min
[

(α0 − 1)/α2, 0.9999
√
Lprev
H /LH

]
14 H ← H + βH(H −Hold)
15 Hold ← H

16 H ←
[
H + W>(M◦(X−WH))

LH

]
∆r

17 Lprev
H ← LH

18 LW = ‖HH>‖2
19 until some stopping criteria is satisfied

A simple choice to initialize the factors, W and H , in Alg. 1
is to randomly initialize them: for all i, each entry of W (i, :) is
generated using the uniform distribution in the interval [ai, bi],
while H is generated using a uniform distribution in [0, 1]r×n

whose columns are then projected on the simplex ∆r.

B. Accelerating BSSMF algorithms via data centering

Not only the BSSMF model is invariant to translations of
the input data (this is explained in details in Section IV-C),
but also the optimization, because of the simplex constraints.
In particular, for any c ∈ R and denoting J the matrix of all
ones of appropriate dimension, minimizing

f(W,H) :=
1

2
‖X −WH‖2F (4)

or
fc(W,H) :=

1

2
‖X − cJ − (W − cJ)H‖2F , (5)

is equivalent in BSSMF, since cJ = cJH as H is column
stochastic. However, outside the feasible set, f and fc do
not have the same topology. Computing the gradients, we
have ∇Hf(W,H) = W>(WH − X) which is Lipschitz
continuous in H with the Lipschitz constant ‖W>W‖, and
∇Hfc(W,H) = W>c (WcH − Xc) which is Lipschitz con-
tinuous in H with the Lipschitz constant ‖W>c Wc‖, where
Wc = W − cJ and Xc = X − cJ . Particularly, for BSSMF,
since W can be interpreted in the same way as X , we
can expect mean(X) ≈ mean(W ), where mean(. ) is the
empirical mean of the entries of the input. Consequently, if
we choose c = mean(X), we expect3 the Lipschitz constant
‖W>c Wc‖ to be smaller than ‖W>W‖. A smaller Lipschitz
constant means that, when updating H , the gradient steps
are allowed to be larger without losing any convergence
guarantee. Hence, with the right translation on our data X ,
the optimization problem on H is unchanged on the feasible
set but Alg. 1 can be accelerated.

Let us illustrate this behavior on a small example with
m = 2, n = 1, r = 2. We choose

X =

(
0.4 0.3
0.7 0.2

)(
0.4
0.6

)
.

We fix
W =

(
0.4 0.3
0.7 0.2

)
,

and try to solve, with respect to H , eq. (4) and eq. (5) with
c = mean(X). We perform 5 projected gradient steps and
display the results on Fig. 1. On the left, 5 projected gradient
steps are performed to update H based on the original data
X . On the right, 5 projected gradient steps are performed to
update H based on the centered data X . The feasible sets (in
dash) are exactly the same, and therefore the optimal solutions
are also the same. However, we observe that the landscape of
the cost function outside the feasible region is smoother when
the data are centered. This allows the solver to converge faster
towards the optimal solution, as the gradients point better
towards the optimal solution and the stepsizes are larger. The
improvement regarding the convergence speed by applying
centering with real data will probably not be as drastic as
in this small example. Still, minimizing a smoother function
is always advantageous, and this will be shown empirically on
real data in Section III-C.

C. Convergence speed and effect of acceleration strategies on
real data

In this subsection, the goal is twofold: (1) show the effect
of the extrapolation in TITAN by comparing Alg. 1 to a
non-extrapolated block coordinate descent, and (2) show the
acceleration effect of centering the data.

We will apply the BSSMF model on MNIST and ml-1m
(these two datasets are properly introduced respectively in
Section V-A and Section V-C) in six different scenarios: 3
data related scenarios × 2 algorithmic related scenarios. The
data scenarios are raw data, centered data, and data to which a

3We empirically noticed that, very often, with c = mean(W ), ‖W>c Wc‖
is of the same order of minc ‖W>c Wc‖.
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‖X −WH‖F feasible set gradient step projected gradient optimal solution
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Fig. 1: Influence of centering the data on the cost function topology regarding H via a small example (m = 2, r = 2, n = 1).
Left: without centering. Right: with centering. Five projected gradient steps are shown, decomposed through one gradient
descent step followed by its projection onto the feasible set.

(a) ml-1m

50 100 150 200
0.8

0.9

1

1.1

1.2

Iteration

R
M

SE

plain+BCD plain+Alg.1
centered+BCD centered+Alg.1
uneven+BCD uneven+Alg.1

(b) MNIST

5 10 15 20 25

0.18
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0.22

0.24

0.26

Iteration

R
M

SE

plain+BCD plain+Alg.1
centered+BCD centered+Alg.1
uneven+BCD uneven+Alg.1

Fig. 2: Evolution of the training error for ml-1m and MNIST, averaged on 10 runs. For ml-1m, r = 5, 1 inner iteration. For
MNIST, r = 50, 10 inner iterations.

positive offset is added (respectively called ‘plain’, ‘centered’
and ‘uneven’ in Fig. 2). Note that ‘uneven’, that is, adding
a positive constant, will worsen the landscape, as ‖W>c Wc‖
will increase (since a ≥ 0). This scenario will allow to
further validate our observation about the acceleration effect
of preprocessing. For each data case, 2 algorithms are tested:
(1) Alg. 1, and (2) a standard block coordinate descent (BCD)
which is Alg. 1 where the β’s are fixed to 0; this corresponds
to the popular proximal alternating linearized minimization
(PALM) algorithm [5]. When the algorithms are compared on
the same data scenario, Alg. 1 always converges faster and
to a better solution than BCD. We also observe that when
the data are centered, applying the same algorithm always
lead to faster convergence than on the plain case. On ml-1m
(Fig. 2a), applying BCD on the centered data is almost as
fast as applying Alg. 1 in the plain case, meaning that a good
preprocessing is almost as important as a good acceleration
strategy. If we look at the root-mean-square error (RMSE) on
the test set, centered data are even more important than a good
acceleration strategy. Actually, at the end of the experiment
from Fig. 2a, on the test set, centered+BCD has an RMSE
of 0.91 while plain+Alg. 1 has an RMSE of 0.94. Still on

ml-1m, Alg. 1 benefits remarkably from centering the data in
comparison to the plain case. We also note an improvement
on MNIST (Fig. 2b) which is not as noticeable as on ml-
1m (probably because this problem is less difficult to solve,
which is corroborated by the number of iterations required to
converge). Here, the uneven case is just shown to remind that
the data points cloud position is of much concern and should
not be neglected. Globally, regardless of the dataset, applying
Alg. 1 on centered data is the best strategy as compared with
using plain data. As a consequence, it will be our default
choice for the experiments in Section V.

As mentioned above, when entries are missing, Alg. 1 can
take advantage of the sparsity of the data and uses multithread-
ing. We report in Table I the computation time of Alg. 1 in the
experiment settings of Fig. 2a, given by the macro @btime
from the package BenchmarkTools.jl. When the dataset
is full, like with MNIST, multithreading is only used for the
projections [.]ab and [.]∆r . The computation time in the settings
of the experiment in Fig. 2b is reported in Table II. Note that
there is no distinction between Alg. 1 and BCD in terms of
computation time because the computation of the acceleration
is negligible compared to the other computations.
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# threads 1 2 4 6 8 10 12
time (s) 30.53 5.14 2.98 2.85 3.00 2.78 3.31

TABLE I: Computation time of Alg. 1 in the experiment
settings of Fig. 2a depending on the number of used threads.

# threads 1 2 4 6 8 10 12
time (s) 27.79 21.92 16.67 15.22 15.73 16.01 16.65

TABLE II: Computation time of Alg. 1 in the experiment
settings of Fig. 2b depending on the number of used threads.

IV. IDENTIFIABILITY

Let us first define a factorization model.

Definition 2 (Factorization model). Given a matrix X ∈
Rm×n, and an integer r ≤ min(m,n), a factorization model
is an optimization model of the form

min
W∈Rm×r,H∈Rr×n

g(W,H)

such that X = WH,

W ∈ ΩW and H ∈ ΩH ,

(6)

where g(W,H) is some criterion, and ΩW and ΩH are the
feasible sets for W and H , respectively.

Let us define the identifiability of a factorization model, and
essential uniqueness of a pair (W,H).

Definition 3 (Identifiability / Essential uniqueness). Let X ∈
Rm×n, and r ≤ min(m,n) be an integer. Let (W,H) be a
solution to a given factorization model (6). The pair (W,H)
is essentially unique for the factorization model (6) of matrix
X if and only if any other pair (W ′, H ′) ∈ Rm×r × Rr×n

that solves the factorization model (6) satisfies, for all k,

W ′(:, k) = αkW (:, π(k))

and
H ′(k, :) = α−1

k H(π(k), :),

where π is a permutation of {1, 2, . . . , r}, and αk 6=0 for all
k. In other terms, (W ′, H ′) can only be obtained as a permu-
tation and scaling of (W,H). In that case, the factorization
model is said to be identifiable for the matrix X .

A key question in theory and practice is to determine
conditions on X , g, ΩW and ΩH that lead to identifiable
factorization models; see, e.g., [16], [29] for discussions.

In the next three sections, we discuss the identifiability of
SSMF, NMF, and BSSMF.

A. Simplex-structured matrix factorization (SSMF)

Without further requirements, SSMF is never identifiable;
which follows from a result for semi-NMF which is a fac-
torization model that requires only one factor, H , to be
nonnegative [22]. Let X = WH be an SSMF of X . We can
obtain other SSMF of X using the following transformation:
for any α ≥ 0, let

W (α) := W
(

(1 + α)I − α

r
J
)
,

and

H(α) :=

(
1

1 + α
H +

α

(1 + α)r
J

)
=

(
1

1 + α
I +

α

(1 + α)r
J

)
H,

where I is the identity matrix of appropriate dimension, and
the last equality follows from e>H = e>. The matrix H(α)
is column stochastic since H and J

r are. One can check that
(W (α), H(α)) is not a permutation and scaling of (W,H) for
α > 0, while WH = W (α)H(α) since4

A(α) :=
(

(1 + α)I − α

r
J
)−1

=
1

1 + α
I +

α

(1 + α)r
J.

Geometrically, to obtain W (α), the columns of W are moved
towards the exterior of conv(W ) and hence the convex hull of
the column of W (α) contains the convex hull of the columns
of W and hence contains conv(X). This follows from the fact
that W = W (α)A(α), where A is column stochastic.

To obtain identifiability of SSMF, one needs either to im-
pose additional constraint on W and/or H such as sparsity [1],
or look for a solution minimizing a certain function g. In
particular, the solution (W,H) that minimizes the volume of
the convex hull of the columns of W (see Theorem 1 below
for a formula) is essentially unique given that H satisfies the
so-called sufficiently scattered condition (SSC). The SSC is
defined as follows.

Definition 4 (Sufficiently scattered condition). The matrix
H ∈ Rr×n

+ is sufficiently scattered if the following two
conditions are satisfied:
[SSC1] C = {x ∈ Rr

+ | e>x ≥
√
r − 1‖x‖2} ⊆ cone(H),

where cone(H) = {x | x = Hy, y ≥ 0} denotes the conical
hull of the columns of H .
[SSC2] There does not exist any orthogonal matrix Q such that
cone(H) ⊆ cone(Q), except for permutation matrices. (An
orthogonal matrix Q is a square matrix such that Q>Q = I),

SSC1 requires the columns of H to contain the cone C,
which is tangent to every facet of the nonnegative orthant;
see Fig. 3. Hence, satisfying SSC1 requires some degree
of sparsity as H needs to contain at least r − 1 zeros per
row [20, Th. 4.28]. SSC2 is a mild regularity condition
which is typically satisfied when SSC1 is satisfied. For more
discussions on the SSC, we refer the interested reader to [16]
and [20, Chapter 4.2.3], and the references therein. For SSMF,
we have the following identifiability result.

Theorem 1. [17], [36] The minimum-volume SSMF factor-
ization model,

min
W∈Rm×r,H∈Rr×n

det(W>W )

such that X = WH and H(:, j) ∈ ∆r for all j,

is identifiable if the pair (W,H) ∈ Rm×r × Rr×n satisfies
rank(W ) = r and H is sufficiently scattered.

4This is an invertible M-matrix, with positive diagonal elements and
negative off-diagonal elements, whose inverse is nonnegative [4].
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Fig. 3: Illustration of the SSC in three dimensions. On the left: the sets ∆3 and C, they intersect at (0,0.5,0.5), (0.5,0,0.5),
and (0.5,0.5,0). (This left figure is similar to [26, Fig. 2] and we are grateful to the authors for providing us with the code to
generate it.) On the right: examples of a matrix H ∈ R3×n satisfying the SSC (left), and not satisfying the SSC (right). The
left (resp. right) figure is adapted from [26] (resp. [1]).

The quantity det(W>W ) measures the volume of conv(W )
within the column space of W . Note that this result has been
generalized to the case where the columns of H belong to a
given polytope instead of the probability simplex; see [43].

In practice, because of noise and model misfit, SSMF
optimization models need to balance the data fitting term
which measures the discrepancy between X and WH , and
the volume regularization for conv(W ). Typically a problem
with objective function of the form

‖X −WH‖2F + λ det(W>W ),

is solved. This requires the tuning of the parameter λ, which
is a nontrivial process [2], [49].

B. Nonnegative matrix factorization (NMF)

As opposed to SSMF, NMF decompositions can be iden-
tifiable without the use of additional requirements. The first
identifiability result was proposed in [13]. Their conditions,
based on separability, are quite strong. In the context of
nonnegative source separation, [40] proposed some necessary
conditions for the uniqueness of the solution. One of the most
relaxed sufficient condition for identifiability is based on the
SSC.

Theorem 2. [26, Theorem 4] If W> ∈ Rr×m and H ∈ Rr×n

are sufficiently scattered, then the Exact NMF (W,H) of X =
WH of size r = rank(X) is essentially unique.

In practice, it is not likely for both W> and H to satisfy
the SSC. Typically H will satisfy the SSC, as it is typically
sparse. However, in many applications, W> will not satisfy the
SSC; in particular in applications where W is not sparse, e.g.,
in hyperspectral umixing, recommender systems, or imaging.
This is why regularized NMF models have been introduced,
including sparse and minimum-volume NMF. We refer the
interested reader to [20, Chapter 4] for more details.

C. Bounded simplex-structured matrix factorization (BSSMF)

A main motivation to introduce BSSMF is that it is identi-
fiable under weaker conditions than NMF. We now state our
main identifiability result for BSSMF, it is a consequence of
the identifiability result of NMF and the following simple ob-
servation: X = WH is a BSSMF for the interval [a, b] implies
that be> −X = (be> −W )H and X − ae> = (W − ae>)H
are Exact NMF decompositions.

Theorem 3. Let W ∈ Rm×r and H ∈ Rr×n satisfy
W (:, k) ∈ [a, b] for all k for some a ≤ b, H ≥ 0, and

H>e = e. If
(
W−ae>
be>−W

)>
∈ Rr×2m and H ∈ Rr×n are

sufficiently scattered, then the BSSMF (W,H) of X = WH of
size r = rank(X) for the interval [a, b] is essentially unique.

Proof. Let (W,H) be a BSSMF of X for the interval [a, b].
As in the proof of Lemma 2, we have

X − ae> = WH − ae> = (W − ae>)H,

since e> = e>H . This implies that (W −ae>, H) is an Exact
NMF of X − ae>, since W − ae> and H are nonnegative.
Similarly, we have

be> −X = be> −WH = (be> −W )H,

which implies that (be>−W,H) is an Exact NMF of be>−X ,
since be> −W ≥ 0. Therefore, we have the Exact NMF(

X − ae>
be> −X

)
=

(
W − ae>
be> −W

)
H.

By Theorem 2, this Exact NMF is unique if
(
W−ae>
be>−W

)>
and H

satisfy the SSC. This proves the result: in fact, the derivations
above hold for any BSSMF of X . Hence, if (W,H) was not
an essentially unique BSSMF of X , there would exist another

Exact NMF of
(
W−ae>
be>−W

)>
, not obtained by permutation and

scaling of
((

W−ae>
be>−W

)
, H
)

, a contradiction.
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Let us note that W−ae> and H being SSC, or be>−W and
H being SSC, are also sufficient conditions for identifiability.
These conditions are stronger, as W − ae> being SSC or

be>−W being SSC implies that
(
W−ae>
be>−W

)>
is SSC. However,(

W−ae>
be>−W

)>
does not imply that W −ae> or be>−W is SSC.

The condition that
(
W−ae>
be>−W

)>
is SSC is much weaker than

requiring W> to be SSC in NMF. In fact, in NMF, W> is
SSC requires that it contains zero entries (at least r−1 per row
[20, Th. 4.28]; this can also be seen on the right of Fig. 3 in
the case r = 3). Since the SSC is only defined for nonnegative
matrices and W> contains zeros, a has to be equal to the zero
vector. In this case, W> being SSC implies that W> − ea>
is SSC, and hence the corresponding BSSMF is identifiable.

However, the reverse is not true. In fact,
(
W−ae>
be>−W

)>
being

SSC means that sufficiently many values in W are equal to
its minimum and maximum bounds in a and b. For example,
in recommender systems, with W (i, j) ∈ [1, 5] for all (i, j),
many entries of W are expected to be equal to 1 or to 5

(the minimum and maximum ratings), so that
(
W−ae>
be>−W

)>
will

contain many zero entries, and hence likely to satisfy the
SSC [15]. On the other hand, W is positive, and hence it
cannot be part of an essentially unique Exact NMF.

Let us illustrate the difference between NMF and BSSMF
on a simple example.

Example 1 (Non-unique NMF vs. unique BSSMF). Let ω ∈
[0, 1) and let

Aω =

 ω 1 1 ω 0 0
1 ω 0 0 ω 1
0 0 ω 1 1 ω

 .

For ω < 0.5, Aω satisfies the SSC, while it does not for
ω ≤ 0.5; see [30, Example 3], [26, Example 2], [20,
Example 4.16]. Let us take

H = 3A1/3 =

 1 3 3 1 0 0
3 1 0 0 1 3
0 0 1 3 3 1

 ,

which satisfies the SSC, and

W> = 3A2/3 =

 2 3 3 2 0 0
3 2 0 0 2 3
0 0 2 3 3 2

 ,

which does not satisfy the SSC, but has some degree of sparsity.
The NMF of

X = WH =


11 9 6 2 3 9
9 11 9 3 2 6
3 9 11 9 6 2
2 6 9 11 9 3
6 2 3 9 11 9
9 3 2 6 9 11



is not essentially unique. For example,

X =


0 3 1
1 3 0
3 1 0
3 0 1
1 0 3
0 1 3


 0 2 3 3 2 0

3 3 2 0 0 2
2 0 0 2 3 3



is another decomposition which cannot be obtained as a
scaling and permutation of (W,H).

However, the BSSMF of X is unique, taking ai = 0 and
bi = 3 for all i. In fact, (3 −W )> satisfies the SSC, as it is
equal to 3A1/3, up to permutation of its columns:

3−W> =

 1 0 0 1 3 3
0 1 3 3 1 0
3 3 1 0 0 1


= 3A1/3(:, [4, 5, 6, 1, 2, 3]).

Therefore, by Theorem 3, the BSSMF of X is unique.

a) Scaling ambiguity: BSSMF is in fact more than
essentially unique in the sense of Definition 3. In fact, the
scaling ambiguity can be removed because of H being simplex
structured, as shown in the following lemma.

Lemma 1. Let H ∈ Rr×n such that e>H = e> and
rank(H) = r. Let D ∈ Rr×r be a diagonal matrix, and
let H ′ = DH be a scaling of the rows of H , and such that
e>H ′ = e>. Then D must be the identity matrix, that is,
D = I .

Proof. Let us denote H† ∈ Rn×r the right inverse of H , which
exists and is unique since rank(H) = r, so that HH† = I .
We have

e>H ′ = e>DH = e>

⇒ e>DHH† = e>H† = e>

since e>H† = e>HH† = e>

⇒ e>D = e> ⇒ D = I.

Note that this lemma does not require H , H ′ and D to be
nonnegative.

b) Geometric interpretation of BSSMF: Solving BSSMF
is equivalent to finding a polytope with r vertices within the
hyperrectangle defined by [a, b] that reconstructs as well as
possible the data points. The fact that BSSMF is constrained
within a hyperrectangle makes BSSMF more constrained than
NMF, and hence more likely to be essentially unique. This
will be illustrated empirically in Section V-B. Let us provide a
toy example to better understand the distinction between NMF
and BSSMF, namely let us use Example 1 with W = 3

10A2/3

and H = 2
3A1/2 so that X = WH is column stochastic.

Fig. 4 represents the feasible regions of NMF and BSSMF
for the hypercube [a, b] = [0, 3

10 ]3 in a two-dimensional space
within the affine hull of W ; see [20] for the details on how to
construct such a representation. For this rank-3 factorization
problem, solving NMF and BSSMF is equivalent to finding
a triangle nested between the convex hull of the data points
and the corresponding feasible region. BSSMF has a unique
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−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

Data points
NMF feasible region

BSSMF feasible region for [0, 3
10 ]3

Unique rank-3 solution for BSSMF
A set of rank-3 solutions for NMF

Fig. 4: Geometric interpretation of BSSMF for Example 1.
Any triangle in the gray filled area containing the data points
is a rank-3 solution for NMF. On the contrary, there is a unique
rank-3 solution for BSSMF since there is a unique triangle
containing the data points in the BSSMF feasible set.

solution, that is, there is a unique triangle between the data
points and the BSSMF feasible region. On the other hand,
NMF is not identifiable: for example, any triangle within the
gray area containing the data points is a solution.

In summary, for the BSSMF of X = WH to be essentially
unique, W must contain sufficiently many entries equal to the
lower and upper bounds, while H must be sufficiently sparse.

c) Choice of a and b: In practice, if a and b are unknown,
it may be beneficial to choose them such that as many entries
of X are equal to the lower and upper bounds, and hence
BSSMF is more likely to be identifiable. Let us denote ãi =
minj X(i, j) and b̃i = maxj X(i, j) for all i, and let X =
WH be a BSSMF for the hyperrectangle [a, b]. We have ã ≥ a
and b̃ ≤ b since H(:, j) ∈ ∆r for all j. Hence, without any
prior information, it makes sense to use a BSSMF with interval
[ã, b̃] which is contained in [a, b].

Remark 2. Interestingly, as shown in Lemma 2 below, in the
exact case, that is, when X = WH , we can assume w.l.o.g.
that [ai, bi] = [0, 1] for all i in BSSMF.

Lemma 2. Let a ∈ Rm and b ∈ Rm be such that ai < bi for
all i. The matrix X = WH admits a BSSMF for the interval
[a, b] if and only if the matrix [X−ae>]

[(b−a)e>]
admits a BSSMF for

the interval [0, 1]m, where [·]
[·] is the component-wise division

of two matrices of the same size.

Proof. Let us show the direction ⇒, the other is obtained
exactly in the same way. Let the matrix X = WH admit a
BSSMF for the interval [a, b]. We have

X − ae> = WH − ae> = (W − ae>)H,

since e>H = e>, as H is column stochastic. This shows that
X ′ = X − ae> admits a BSSMF for the interval [0, b − a]
since W ′ = (W − ae>) ∈ [0, b − a]. For simplicity, let us
denote c = b− a > 0. We have X ′ = W ′H , while

[X − ae>]

[(b− a)e>]
=

[X ′]

[ce>]
=

[W ′H]

[ce>]
=

[W ′]

[ce>]
H,

because H is column stochastic. In fact, for all i, j,

[W ′H]i,j
[ce>]i,j

=

∑
kW

′(k, i)H(k, j)]i,j
ci

=
∑
k

W ′(k, i)

ci
H(k, j)

=

(
[W ′]

[ce>]
H

)
i,j

.

Hence [X−ae>]
[(b−a)e>]

admits a BSSMF for the interval [0, 1]m since

H is column stochastic, and all columns of [W ′]
[ce>]

= [W−ae>]
[(b−a)e>]

belong to [0, 1]m.

Remark 3 (What if ai = bi for some i?). Lemma 2
does not cover the case ai = bi for some i. In
that case, we have W (i, :) = ai = bi and therefore
X(i, :) = W (i, :)H = aie

> = bie
>. This is not an interesting

situation, and rows of X with identical entries can be removed.
In fact, after the transformation X − ae>, these rows are
identically zero.

Lemma 2 highlights another interesting property of BSSMF:
as opposed to NMF, it is invariant to translations of the
entries of the input matrix, given that a and b are translated
accordingly. For example, in recommender systems datasets
such as Netflix and MovieLens, X(i, j) ∈ {1, 2, 3, 4, 5} for all
i, j. Changing the scale, say to {0, 1, 2, 3, 4}, does not change
the interpretation of the data, but will typically impact the
NMF solution significantly5, while the BSSMF solution will
be unchanged, if the interval is translated from [1, 5] to [0, 4]
since H is invariant by translation on X . This property is in
fact coming from SSMF.

V. NUMERICAL EXPERIMENTS

The goal of this section is to highlight the motivation points
mentioned in Section II on real data sets. All experiments
are run on a PC with an Intel(R) Core(TM) i7-9750H CPU
@ 2.60GHz and 16GiB RAM. Let us recall that in order
to retrieve NMF from Alg. 1, the bounds need to be set to

5In fact, for NMF, it would make more sense to work on the datasets
translated to [0, 4], as it would potentially allow it to be identifiable: zeros in
X imply zeros in W and H , which are therefore more likely to satisfy the
SSC.
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(a, b) = (0,+∞) and the projection step on the probability
simplex in line 16 should be replaced by a projection on the
nonnegative orthant. Hence, in our experiments, both NMF
and BSSMF are solved with the same code implementation.

A. Interpretability

When applied on a pixel-by-image matrix, NMF allows to
automatically extract common features among a set of images.
For example, if each row of X is a vectorized facial image,
the rows of W will correspond to facial features [32].

Let us compare NMF with BSSMF on the widely used
MNIST handwritten digits dataset (60, 000 images, 28 × 28
pixels) [31]. Each column of X is a vectorized handwritten
digit. For BSSMF to make more sense, we preprocess X so
that the intensities of the pixels in each digit belong to the
interval [0, 1] (first remove from X(:, j) its minimum entry,
then divide by the maximum entry minus the minimum entry).

Let us take a toy example with n = 500 randomly
selected digits and r = 10, in order to visualize the natural
interpretability of BSSMF. The choice of n is made solely for
computational time considerations. For larger n, Fig. 5b might
change but we will not lose interpretability. Fig. 5a shows the

(a) NMF

(b) BSSMF

Fig. 5: Reshaped columns of the basis matrix W for r = 10
for MNIST with 500 digits.

features learned by NMF which look like parts of digits. On
the other hand, the features learned by BSSMF in Fig. 5b
look mostly like real digits, because of the bound constraint
and the simplex structure. In fact, as it is well known [32]
that NMF learns part-based representations, in this case, parts
of digits. In other words, the columns of W in NMF identify
subset of pixels that are activated simultaneously in as many
images as possible. Now, by the scaling degree of freedom,
assume w.l.o.g. that W (:, j) ∈ [0, 1]m for all j in NMF. Since
the columns of W are parts of digits, each digits will have
to use several of these parts, with an intensity close to one,
so that H will be far from being column stochastic. BSSMF,

with the simplex constraint on H and the bound constraints
on W , therefore cannot learn such a part-based representation.
This is the reason why BSSMF learns more global features
that, added on top of each other, reconstruct the digits. As it
is shown in the MNIST experiment, these features look like
digits themselves. Interestingly, if we progressively increase
the upper bound, we would see that BSSMF progressively
learns parts of digits, like NMF (using a lower bound of zero,
that is, BSSMF with [0, u]m with u ≥ 1). This is an indirect
way of balancing the sparsity between W and H . The larger
the upper bound, the more relaxed is BSSMF and hence the
sparser W will be (given that the lower bound is 0). In Fig. 5b,
we distinguish numbers (like 7, 3 and 6). From a clustering
point of view, this is of much interest because a column of
H which is near a ray of the probability simplex can directly
be associated with the corresponding digit from W . In this
toy example, due to r being small, an 8 cannot be seen.
Nonetheless, an eight can be reconstructed as the weighted
sum of the representations of a 5, a 3 and an italic 1; see Fig. 6
for an example. Note that since BSSMF is more constrained

=

0.33×

+

0.13×

+

0.36×

+ . . .

Fig. 6: Decomposition of an eight by BSSMF with r = 10.

than NMF, its reconstruction error might be larger than that
of NMF. For our example (r = 10), BSSMF has relative error
‖X −WH‖F /‖X‖F of 61.56%, and NMF of 59.04%. This
is not always a drawback. In some applications, due to the
presence of noise, although the reconstruction error of BSSMF
is larger than that of NMF, the accuracy of the estimated
factors W and H could be better, because it uses the prior
information and is less prone to overfitting and less sensitive
to outliers. See also the discussion in Section V-C where NMF
has a lower RMSE than BSSMF on the training set, but a larger
RMSE than BSSMF on the test set. Note that we also compute
NMFs using Alg. 1 where the projections are performed on
the nonnegative orthant, instead of on the bounded set for W
and on the probability simplex for H . The stopping criteria in
line 19, 3 and 11 of Alg. 1 are a maximum number of iterations
equal to 500, 20 and 20, respectively, for both algorithms.

B. Identifiability

As it is NP-hard to check the SSC [26], we perform exper-
iments on MNIST and synthetic data where only a necessary
condition for SSC1 is verified, namely [20, Alg. 4.2].

a) MNIST dataset: On MNIST, to see when H satisfies
this condition, we first vary n from 100 to 300 for m fixed
(=28×28). For W>, we fix n to 300, and downscale the
resolution m from 28×28 to 12×12 with a linear interpolation
(imresize3 in MATLAB), and the rank r is varied from 12
to 30. Recall that both factors need to satisfy the SSC to cor-
respond to an essentially unique factorization. In Fig. 7a, we
see that W> of NMF often satisfies the necessary condition.
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This is due to NMF learning “parts” of objects [32], which are
sparse by nature, and sparse matrices are more likely to satisfy
the SSC (definition 4). On the contrary, even for a relatively
large n, H is too dense to satisfy the necessary condition. For
r ≥ 30, the factor H generated by NMF never satisfies the
condition. Meanwhile, in Fig. 7b we see that H of BSSMF
always satisfies the condition when n ≥ 225 for r = 30 and
more generally, if n and m are large enough, both H and(

W
J−W

)>
satisfy the necessary condition. This substantiates

that BSSMF provides essentially unique factorizations more
often than NMF does.

H
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(b) BSSMF

Fig. 7: Ratio, over 10 runs, of the factors generated by NMF
in Fig. 7a and by BSSMF in Fig. 7b that satisfy the necessary
condition for SSC1 (white squares indicate that all matrices
meet the necessary condition, black squares that none do).

b) Synthetic datasets: Let us now perform an experiment
to show how BSSMF is more likely than NMF to recover
factors closer to the true ones, even when the sufficient
conditions for identifiability are not satisfied. As there is no
groundtruth for NMF and BSSMF on MNIST, we generate
synthetic data as follows. Our synthetic datasets are of size
100× 100, and their factorization rank is 10. The matrix H is
generated randomly with values uniformly distributed between
zero and one, and we randomly set 30% of the values to zero.
This allows us to ensure that H satisfies the SSC. The reason
behind ensuring that H is SSC is that both NMF (Theorem 2)
and BSSMF (Theorem 3) require that H satisfies the SSC6. As
we want to emphasize on how likely it is to retrieve the true
factors for NMF and BSSMF, we make sure that their common
conditions for identifiability are satisfied. The matrix W is

6In this experiment, because n and r are smaller, we could checked that
the SSC is satisfied (not a necessary condition), using Gurobi (https://www.
gurobi.com/), a global optimization software.

also generated randomly with values uniformly distributed
between zero and one, and we then set a percentage of p0,1

of the entries to zero and one, with the same probability to
be equal to zero or one. Hence, p0,1 percent of the values in
W touches the lower and upper bounds in BSSMF. Finally,
we let X = WH to get our synthetic data. We solve NMF
and BSSMF on X using Alg. 1. To assess the quality of the
solutions, we report the average of the mean removed spectral
angle (MRSA) between the columns of the true W and the
estimated W (after an optimal permutation of the columns), as
this is standard in the NMF literature. Given any two vectors
a and b, their MRSA is defined as

MRSA(a, b) =
100

π
arcos

(
(a− ae)>(b− be)
‖a− ae‖2‖b− be‖2

)
∈ [0, 100] ,

where · is the average of the entries of a vector.
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Fig. 8: Boxplots of the average MRSA between the true W
and the estimated W by NMF and BSSMF for the hypercube
[0, 1]100 over 20 trials, depending on the percentage, p0,1, of
values equal to 0 and 1 in the true W .

We vary the percentage p0,1 of values touching the lower
and uppper bounds in W (namely, 0 and 1) from 0% to
30% with a 5% increment. For each value of p0,1, the test
is performed 20 times. Let us note that among the generated
true W ’s, between p0,1 = 0% and p0,1 = 15%,

(
W

J−W
)>

never
satisfies the necessary conditions for SSC1. For p0,1 = 20%,
3 out of the 20 generated

(
W

J−W
)>

satisfies the necessary
conditions for SSC1, 10 out of 20 for p0,1 = 25%, and
17 out of 20 for p0,1 = 30%. Let us also note that for all
values of p0,1 within the considered range, W never satisfies
the necessary conditions for SSC1. The distribution of the
average MRSAs is reported in Fig. 8. Clearly, the MRSA is
always smaller for BSSMF compared to NMF, even when the
necessary conditions for SSC1 are not satisfied for

(
W

J−W
)>

;
this is because the feasible set of BSMF is contained in that

https://www.gurobi.com/
https://www.gurobi.com/
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of NMF, and hence the generated factors are more likely
to be closer to the groundtruth. This also illustrates that the
conditions of Theorem 3 for the identifiability of BSSMF are
only sufficient, since BSSMF finds solutions with MRSA close
to machine epsilon when these conditions are not fulfilled.

C. Robustness to overfitting

In this section we compare unconstrained matrix factoriza-
tion (MF), NMF and BSSMF on the matrix completion prob-
lem; more precisely, on rating datasets for recommendation
systems. Let X be an item-by-user matrix and suppose that
user j has rated item i, that rating would be stored in Xi,j . The
matrix X is then highly incomplete since a user has typically
only rated a few of the items. In this context, NMF looks for
nonnegative factors W and H such that M ◦X ≈M ◦(WH),
where Mi,j is equal to 1 when user j rated item i and is
equal to 0 otherwise. A missing rating Xi,j is then estimated
by computing W (i, :)H(:, j). Features learned by NMF on
rating datasets tend to be parts of typical users. Yet, the
nonnegative constraint on the factors hardly makes the features
interpretable by a practitioner. Suppose that the rating a user
can give is an integer between 1 and 5 like in many rating
systems, NMF can learn features whose values may fall under
the minimum rating 1 or may exceed the maximum rating
5. Consequently, the features cannot directly be interpreted
as typical users. On the contrary, with BSSMF, the extracted
features will directly be interpretable if the lower and upper
bounds are set to the minimum and maximum ratings. On top
of that, BSSMF is expected to be less sensitive to overfitting
than NMF since its feasible set is more constrained.

This last point will be highlighted in the following experi-
ment on the ml-1m dataset7, which contains 1 million ratings
from 6040 users on 3952 movies. As in [35], we split the data
in two sets : a training set and a test set. The test set contains
500 users. We also remove any movie that has been rated less
than 5 times from both the training and test sets. For the test
set, 80% of a user’s ratings are considered as known. The
remaining 20% are kept for evaluation. During the training,
we learn W only on the training set. During the testing, the
learned W is used to predict those 20% kept ratings of the test
set by solving the H part only on the 80% known ratings. This
simulates new users that were not taken into account during
the training, but for whom we would still want to predict the
ratings. The reported RMSEs are computed on the 20% kept
ratings of the test set. In order to challenge the overfitting
issue, we vary r in {1, 5, 10, 20, 50, 100} for BSSMF, NMF
and an unconstrained MF which are all computed using
Alg. 1, where the projections onto the feasible sets are adapted
accordingly (projection onto the nonnegative orthant for NMF,
no projection for unconstrained MF). The stopping criteria in
line 19, 3 and 11 of Alg. 1 are a maximum number of iterations
equal to 200, 1 and 1, respectively, for all algorithms. The
experiment is conducted on 10 random initializations and the
average RMSEs are reported is Table III. As expected, BSSMF
and NMF are more robust to overfitting than unconstrained
MF. Additionnaly, BSSMF is also clearly more robust to

7https://grouplens.org/datasets/movielens/1m/

overfitting than NMF. Its worse RMSE is 0.89 with r = 100
(and it is still equal to 0.89 with r = 200), while, for NMF, the
RMSE is 0.92 when r = 100 (which is worse than a rank-one
factorization giving a RMSE of 0.91).

r BSSMF NMF MF
1 0.97± 2· 10−5 0.88± 0.002 0.91± 5· 10−6

5 0.87± 0.001 0.87± 0.003 0.87± 0.003
10 0.86± 0.002 0.87± 0.001 0.87± 0.002
20 0.87± 0.002 0.87± 0.002 0.88± 0.002
50 0.88± 0.002 0.90± 0.004 0.93± 0.004

100 0.89± 0.003 0.92± 0.003 0.99± 0.004

TABLE III: RMSE on the test set according to r, averaged ±
standard deviation on 10 runs on ml-1m

The same experiment is conducted on the ml-100k dataset8

which contains 100,000 ratings from 1,700 movies rated by
1,000 users. The test set contains 50 users. The results are
reported in Table IV, and the observations are similar: BSSMF
is significantly more robust to overfitting than NMF and
unconstrained MF.

r BSSMF NMF MF
1 0.98± 1· 10−4 0.91± 3· 10−5 0.91± 5· 10−5

5 0.89± 0.005 0.89± 0.01 0.89± 0.008
10 0.90± 0.008 0.90± 0.009 0.92± 0.01
20 0.91± 0.01 0.93± 0.01 0.97± 0.02
50 0.93± 0.01 0.97± 0.01 1.06± 0.03

100 0.94± 0.01 1.01± 0.007 1.13± 0.02

TABLE IV: RMSE on the test set according to r, averaged ±
standard deviation on 10 runs on ml-100k

VI. CONCLUSION

In this paper, we proposed a new factorization model,
namely bounded simplex structured matrix factorization
(BSSMF). Fitting this model retrieves interpretable factors: the
learned basis features can be interpreted in the same way as the
original data while the activations are nonnegative and sum to
one, leading to a straightforward soft clustering interpretation.
Instead of learning parts of objects as NMF, BSSMF learns
objects that can be used to explain the data through convex
combinations. We have proposed a dedicated fast algorithm
for BSSMF, and showed that, under mild conditions, BSSMF
is essentially unique. We also showed that the constraints in
BSSMF make it robust to overfitting on rating datasets without
adding any regularization term.

Further work include:

• the use of BSSMF for other applications,
• the generalization of BSSMF, e.g., as done in [43] for

SSMF where the feasible set for the columns of H ,
namely the probability simplex, is replaced by any poly-
tope,

• the design of more efficient algorithms for BSSMF, and
• the design of algorithms for other BSSMF models, e.g.,

with other data fitting terms such as the Kullback-Leibler
divergence, as done recently in [34] for SSMF with
nonnegativity constraint on W .

8https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/100k/
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[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[32] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects
by non-negative matrix factorization. Nature, 401:788–791, 1999.

[33] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative
matrix factorization. In Advances in Neural Information Processing
Systems (NIPS), pages 556–562, 2001.

[34] Valentin Leplat, Nicolas Gillis, and Jérôme Idier. Multiplicative updates
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